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Low energy physics with Liquid Argon TPCs

* Ingredients for low energy neutrino scattering
* Neutrino Scattering measurements
* What LarTPCs can bring you



What is “very low energy”
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How do you do low energy physics well?

Ingredients for precision, low energy,
neutrino scattering measurements

*High intensity beams -> high event rates  statistical
-

errors
eMinimize flux uncertainties
o 15-20% in the past -> 5% expected by
MiniBooNE and MINOS systematic
. . . . . /
«Minimize background contamination errors

e |ow energy neutrino spectrum (below DIS
turn-on and with small high energy tail)

o fine-grained detector -> good final state
separation



Lots of interesting things....
I'll focus on:

e Measuring As using vp elastic scattering

* Searching for non-zero neutrino magnetic
moments using muon neutrino-electron elastic
scatters

 Understanding single pion production

Exploring ideas....



Strange Spin of Nucleon

(As: the strange quark
contribution to the nucleon

spin)

This will address a
fundamental aspect of nucleon
structure:

- What carries the nucleon
spin! valence quarks, sea
quarks, gluons?

- Can we describe the proton
in terms of a fundamental
theory?

These are
still open questions!

Low energy neutrino scattering is a
great way to probe the strange spin of the proton



Who has already measured As?

Polarized-lepton DIS

(EMC, SMC, SLAC)
results indicate that the fraction
of proton spin carried by light

guarks:
A < 1 where

strange contribution

AS ~ -0.10+£0.05

-0.8

——» strongly dependent on =2 0 2
assumptions of SU(3) flavor symmetry Ag



Results from HERMES*

(semi-inclusive data)
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* Int. J. Mod. Phys. A17, 3551, '02.

AS> (0!

pi, k, or p in final
tate in coincidence
ith scattered lepton

flavor tag helps probe
flavor dependence of
spin structure



Measuring As using neutrinos

n n n
[

) . ) Z

q q q q
quasi-elastic CC .

scattering Neutral current scattering

g=up and down g=any quark in the nucleon
quarks only -> strange quarks



Neutrino-nucleon elastic scattering

- Nucleon Neutral Weak Current depends most
strongly on
G, (axial) form factor... (somewhat on F,,F,)

-G (@) =-105(@) + G,°(Q))
- g, known (nuclear beta decay)
_ GAS (Q2=O) = AS

neutrino-proton NC cross section at low
Q° —f AS

Problem: 10% error at best on neutrino flux!



Take advantage of cross section ratios!

—» Ratio of neutral-current elastic scattering on protons to
neutrons*:

R(p/n)= (vp -> vp)/(vh -> vn)
Is quite sensitive to G, (Ds) because:
Gy =-0,t+G,, (t=1p,-1n)

Ratio of NC elastic scattering to CC quasi-€lastic scattering:
- R(NC/CC)= (vp, NC)/(vp, CC)
ISsomewhat less sensitiveto As,  but experimentally easier.

Very small systematic error due to the uncertainty in neutrino
flux!

*(Garvey et al., PR C48, 1919, '93)



Using “conventional” detectors

o(As) ~ 0.04 and better

Measure NC/CC ratio
to 5%

NC/CC ratio: (vs Q)
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How much better?

e]Jdentifying neutrons is important!
* Dominant systematic in measuring
neutrino-proton cross section
e (vp ->vp)/(vh-> vn)ismore sensitive to As

*Eliminate error on correction for scattering on
free protons (no free protons!)

*Measure short tracks (low Q%) — good
resolution
-> worry: nuclear effects



What do neutrons and protons look like?

100 MeV Kkinetic energy

events in Liquid Argon
Protons:
Neutrons: short, clear
tracks

scatter around

No measurements of this!



Single Pion Production

Resonant Production (~80%)

eresonant channels typically t
known ~20-40% 7,0

*interactions complicated by = o8
final state effects (p absorption, fé 05
charge exchange) 1’:‘0‘4

°as in QE's, all data below 1 GeV .
is on light targets E0

CC Single Pion Production

[ 4 ANL, Barish, Phys. Rev. D19, 2521 (1979), H,, D,
[ ¥ ANL, Radecky, Phys. Rev. D25, 1161 (1982), Hy. Dy

© BHNL, Kitagaki, Phys. Rev. D34, 2554 (1988), D,
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A 04 Coherent Production (~20%)
P scatter from entire nucleus...
A A  eoverdl rate not well known (~100% uncertainty)
e . . eno data below 2 GeV
distinct kinematics:
forward scattered p x20 variation in recent models

small energy transfer to target (low Q%)

at E~1 GeV




Neutral current pion production:

significant background for present and future
el ectron neutrino appearance searches

NC Single Pion Production
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Liquid Argon TPCs:
excellent spatial resolution: separating single pion
production from other channels
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Neutrino magnetic moments

V Vv

massive neutrinos imply existence
of vp

Expect a non-zero
neutrino magnetic moment if you have
massive neutrinos

AVIEAVAVAY

T

Increase in overall cross Hard to measure with
section ¢ =o + o, "~ large flux uncertainties

tot weak
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Limits set from experiment:

Electron neutrino magnetic moment: -> 1.0 -1.5 1010 u

ePreliminary measurement from MUNU
eSuperK shape fit

Muon neutrino magnetic moment: -> 6.8 x 10-10ug

oL SND experiment: combined measurement of electron and
muon neutrino magnetic moment using total ve cross section

How is this different from v, searchs?

(already set better limits)
> solar v, measures u,

> reactor v, measures primarily u, and u,
> accelerator v s would measure u;, u,, and u;

Tau neutrino magnetic moment: -> 109 ug
eSuperK & SNO bounds for all neutrinos



Different beyond-the-Standard-Model theories
predict different sizes for this neutrino magnetic moment

Minimally Extended Standard Model
~ 3 X 10'19MB

SUSY models: left-right supersymmetric models

Uye => 5.34 X 1015 - 1016 pg
Uy => 1.13x 1012 - 1018 yg
Uye> 19X 1012 ug

order of
Large Extra Dimensions magnitude
wy => 1.0x 10 pg lower than

present li




Measuring Wy, at accelerators:

neutrino-electron elastic scattering cross section is low
— high intensity and relatively large detectors

make measurement at low electron recoils
where there are lots of radioactive backgrounds
— need low electron recoil threshold detectors
need beam structure to reduce in time background rates

svary number of interactions
*and electron recoil threshold
*Neutrino energy set to 1 GeV for all these studies



What happens when you push on electron
recoil threshold?

Carbon detectors:
difficult to ID electrons below 10 MeV
»>seeing tracks
>radioactive backgrounds and spallation backgrounds
»>energy resolution (at MiniBooNE: 15% at 50 MeV)

Liquid Argon TPC detectors:
>forward tracks down to 5 MeV
>electron detection down to 150 keV
»*energy resolution is about 5% at 5MeV
>radioactive backgrounds still there

> remove with timing cuts
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Typical
number of
hits: 5
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Electron detection down to 150 keV:

ICARUS has demonstrated that they \
see electrons down to:

Open questions:

Good enough energy resolution?

How good is the signal/noise?

How much scintillation light?

How worrisome are radioactive backgrounds?



Timing is everything!

Radioactive backgrounds become large below 5 MeV
uranium, thorium, radon etc.

|

Even largest bknd (ys at 1 MeV) are negligeable
due to beam timing:
350 ys per year in time with Booster beam spills



Easiest and achievable scenario:
15000 events with electron recoil threshold at 5 MeV
Y

An order of magnitude improvement
in neutrino maanetic moments

Eriripe 10040

i| ‘_ sensitivity:
H uw=6.8 x 10 u

B




Conclusions:

Liquid Argon TPCs hold promise to improve
on all sorts of neutrino scattering measurements:

»excellent tracking and resolution
>low thresholds
>particle identification

Improving measurement of strange spin of the proton
Precision cross section measurements
Extending search for non-zero neutrino magnetic moment



